HMGB1 Accelerates Alveolar Epithelial Repair via an IL-1β- and αvβ6 Integrin-dependent Activation of TGF-β1
نویسندگان
چکیده
High mobility group box 1 (HMGB1) protein is a danger-signaling molecule, known to activate an inflammatory response via TLR4 and RAGE. HMGB1 can be either actively secreted or passively released from damaged alveolar epithelial cells. Previous studies have shown that IL-1β, a critical mediator acute lung injury in humans that is activated by HMGB1, enhances alveolar epithelial repair, although the mechanisms are not fully understood. Herein, we tested the hypothesis that HMGB1 released by wounded alveolar epithelial cells would increase primary rat and human alveolar type II cell monolayer wound repair via an IL-1β-dependent activation of TGF-β1. HMGB1 induced in primary cultures of rat alveolar epithelial cells results in the release of IL-1β that caused the activation of TGF-β1 via a p38 MAPK-, RhoA- and αvβ6 integrin-dependent mechanism. Furthermore, active TGF-β1 accelerated the wound closure of primary rat epithelial cell monolayers via a PI3 kinase α-dependent mechanism. In conclusion, this study demonstrates that HMGB1 released by wounded epithelial cell monolayers, accelerates wound closure in the distal lung epithelium via the IL-1β-mediated αvβ6-dependent activation of TGF-β1, and thus could play an important role in the resolution of acute lung injury by promoting repair of the injured alveolar epithelium.
منابع مشابه
Pro‐migratory and TGF‐β‐activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8‐dependent GTPase switch
The integrin αvβ6 is up-regulated in numerous carcinomas, where expression commonly correlates with poor prognosis. αvβ6 promotes tumour invasion, partly through regulation of proteases and cell migration, and is also the principal mechanism by which epithelial cells activate TGF-β1; this latter function complicates therapeutic targeting of αvβ6, since TGF-β1 has both tumour-promoting and -supp...
متن کاملRegulation of transforming growth factor-β1-dependent integrin β6 expression by p38 mitogen-activated protein kinase in bile duct epithelial cells.
Bile duct epithelial cells (BDECs) contribute to liver fibrosis by expressing αVβ6 integrin, a critical activator of latent transforming growth factor β (TGF-β). β6 integrin (Itgβ6) mRNA induction and αVβ6 integrin expression in BDECs are partially TGF-β-dependent. However, the signaling pathways required for TGF-β-dependent Itgβ6 mRNA induction in BDECs are not known. We tested the hypothesis ...
متن کاملAmplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect ...
متن کاملAnti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD
Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 si...
متن کاملThe αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells.
Allergic asthma is the most common form of asthma, affecting more than 10 million Americans. Although it is clear that mast cells have a key role in the pathogenesis of allergic asthma, the mechanisms by which they regulate airway narrowing in vivo remain to be elucidated. Here we report that mice lacking αvβ6 integrin are protected from exaggerated airway narrowing in a model of allergic asthm...
متن کامل